MakeItFrom.com
Menu (ESC)

2025 Aluminum vs. AISI 403 Stainless Steel

2025 aluminum belongs to the aluminum alloys classification, while AISI 403 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2025 aluminum and the bottom bar is AISI 403 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
190 to 240
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 15
16 to 25
Fatigue Strength, MPa 130
200 to 340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 240
340 to 480
Tensile Strength: Ultimate (UTS), MPa 400
530 to 780
Tensile Strength: Yield (Proof), MPa 260
280 to 570

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 190
740
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 520
1400
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 150
28
Thermal Expansion, µm/m-K 23
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
6.5
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 7.9
1.9
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 1130
99

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 450
210 to 840
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 37
19 to 28
Strength to Weight: Bending, points 40
19 to 24
Thermal Diffusivity, mm2/s 58
7.6
Thermal Shock Resistance, points 18
20 to 29

Alloy Composition

Aluminum (Al), % 90.9 to 95.2
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
11.5 to 13
Copper (Cu), % 3.9 to 5.0
0
Iron (Fe), % 0 to 1.0
84.7 to 88.5
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0.4 to 1.2
0 to 1.0
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 1.2
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0