MakeItFrom.com
Menu (ESC)

2025 Aluminum vs. ASTM A182 Grade F5

2025 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F5 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2025 aluminum and the bottom bar is ASTM A182 grade F5.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
180
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 15
22
Fatigue Strength, MPa 130
220
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Shear Strength, MPa 240
340
Tensile Strength: Ultimate (UTS), MPa 400
540
Tensile Strength: Yield (Proof), MPa 260
310

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 190
510
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 520
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
40
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 120
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
4.5
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 7.9
1.8
Embodied Energy, MJ/kg 150
24
Embodied Water, L/kg 1130
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
100
Resilience: Unit (Modulus of Resilience), kJ/m3 450
260
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 37
19
Strength to Weight: Bending, points 40
19
Thermal Diffusivity, mm2/s 58
11
Thermal Shock Resistance, points 18
15

Alloy Composition

Aluminum (Al), % 90.9 to 95.2
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
4.0 to 6.0
Copper (Cu), % 3.9 to 5.0
0
Iron (Fe), % 0 to 1.0
91.5 to 95.3
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0.4 to 1.2
0.3 to 0.6
Molybdenum (Mo), % 0
0.44 to 0.65
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.5 to 1.2
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0