MakeItFrom.com
Menu (ESC)

2025 Aluminum vs. ASTM A588 Steel

2025 aluminum belongs to the aluminum alloys classification, while ASTM A588 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2025 aluminum and the bottom bar is ASTM A588 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
170
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 15
22
Fatigue Strength, MPa 130
270
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 240
350
Tensile Strength: Ultimate (UTS), MPa 400
550
Tensile Strength: Yield (Proof), MPa 260
390

Thermal Properties

Latent Heat of Fusion, J/g 400
250 to 260
Maximum Temperature: Mechanical, °C 190
410
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 520
1410 to 1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
43 to 44
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.3 to 2.5
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 7.9
1.5 to 1.6
Embodied Energy, MJ/kg 150
20 to 22
Embodied Water, L/kg 1130
50 to 51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
110
Resilience: Unit (Modulus of Resilience), kJ/m3 450
400
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 37
20
Strength to Weight: Bending, points 40
19
Thermal Diffusivity, mm2/s 58
12
Thermal Shock Resistance, points 18
16