MakeItFrom.com
Menu (ESC)

2025 Aluminum vs. AWS E80C-Ni3

2025 aluminum belongs to the aluminum alloys classification, while AWS E80C-Ni3 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2025 aluminum and the bottom bar is AWS E80C-Ni3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 15
27
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 400
630
Tensile Strength: Yield (Proof), MPa 260
530

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 520
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
51
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
3.9
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 7.9
1.7
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1130
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
160
Resilience: Unit (Modulus of Resilience), kJ/m3 450
740
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 37
22
Strength to Weight: Bending, points 40
21
Thermal Diffusivity, mm2/s 58
14
Thermal Shock Resistance, points 18
19

Alloy Composition

Aluminum (Al), % 90.9 to 95.2
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.9 to 5.0
0 to 0.35
Iron (Fe), % 0 to 1.0
92.8 to 97.3
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0.4 to 1.2
0 to 1.5
Nickel (Ni), % 0
2.8 to 3.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.5 to 1.2
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.5