MakeItFrom.com
Menu (ESC)

2025 Aluminum vs. EN 1.3967 Stainless Steel

2025 aluminum belongs to the aluminum alloys classification, while EN 1.3967 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2025 aluminum and the bottom bar is EN 1.3967 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
200
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 15
22
Fatigue Strength, MPa 130
240
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 400
690
Tensile Strength: Yield (Proof), MPa 260
350

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 190
1070
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 520
1380
Specific Heat Capacity, J/kg-K 870
470
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 10
25
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 7.9
4.8
Embodied Energy, MJ/kg 150
66
Embodied Water, L/kg 1130
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
130
Resilience: Unit (Modulus of Resilience), kJ/m3 450
310
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 37
24
Strength to Weight: Bending, points 40
22
Thermal Shock Resistance, points 18
15

Alloy Composition

Aluminum (Al), % 90.9 to 95.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
20 to 21.5
Copper (Cu), % 3.9 to 5.0
0
Iron (Fe), % 0 to 1.0
50.3 to 57.8
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0.4 to 1.2
4.0 to 6.0
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0
15 to 17
Niobium (Nb), % 0
0 to 0.25
Nitrogen (N), % 0
0.2 to 0.35
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.5 to 1.2
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0