MakeItFrom.com
Menu (ESC)

2025 Aluminum vs. EN 1.5805 Steel

2025 aluminum belongs to the aluminum alloys classification, while EN 1.5805 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2025 aluminum and the bottom bar is EN 1.5805 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
140 to 170
Elastic (Young's, Tensile) Modulus, GPa 72
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 400
460 to 1180

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
430
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 520
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
40
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
3.1
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 7.9
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1130
53

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 37
16 to 42
Strength to Weight: Bending, points 40
17 to 32
Thermal Diffusivity, mm2/s 58
11
Thermal Shock Resistance, points 18
13 to 35

Alloy Composition

Aluminum (Al), % 90.9 to 95.2
0
Carbon (C), % 0
0.070 to 0.12
Chromium (Cr), % 0 to 0.1
0.9 to 1.2
Copper (Cu), % 3.9 to 5.0
0 to 0.25
Iron (Fe), % 0 to 1.0
95.7 to 97.2
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0.4 to 1.2
0.6 to 0.9
Nickel (Ni), % 0
1.2 to 1.5
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.5 to 1.2
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0