MakeItFrom.com
Menu (ESC)

2025 Aluminum vs. EN 1.8151 Steel

2025 aluminum belongs to the aluminum alloys classification, while EN 1.8151 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2025 aluminum and the bottom bar is EN 1.8151 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
200 to 540
Elastic (Young's, Tensile) Modulus, GPa 72
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 400
670 to 1940

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 190
410
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 520
1400
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 150
50
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.2
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 7.9
1.8
Embodied Energy, MJ/kg 150
25
Embodied Water, L/kg 1130
49

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 37
24 to 70
Strength to Weight: Bending, points 40
22 to 45
Thermal Diffusivity, mm2/s 58
14
Thermal Shock Resistance, points 18
20 to 58

Alloy Composition

Aluminum (Al), % 90.9 to 95.2
0
Carbon (C), % 0
0.4 to 0.5
Chromium (Cr), % 0 to 0.1
0.4 to 0.8
Copper (Cu), % 3.9 to 5.0
0
Iron (Fe), % 0 to 1.0
95.9 to 97.2
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0.4 to 1.2
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.5 to 1.2
1.3 to 1.7
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.15
0
Vanadium (V), % 0
0.1 to 0.2
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0