MakeItFrom.com
Menu (ESC)

2025 Aluminum vs. EN 2.4680 Cast Nickel

2025 aluminum belongs to the aluminum alloys classification, while EN 2.4680 cast nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2025 aluminum and the bottom bar is EN 2.4680 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 15
9.1
Fatigue Strength, MPa 130
120
Poisson's Ratio 0.33
0.26
Shear Modulus, GPa 27
84
Tensile Strength: Ultimate (UTS), MPa 400
600
Tensile Strength: Yield (Proof), MPa 260
260

Thermal Properties

Latent Heat of Fusion, J/g 400
350
Maximum Temperature: Mechanical, °C 190
1050
Melting Completion (Liquidus), °C 640
1360
Melting Onset (Solidus), °C 520
1320
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 150
14
Thermal Expansion, µm/m-K 23
15

Otherwise Unclassified Properties

Base Metal Price, % relative 10
60
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 7.9
9.1
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1130
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
45
Resilience: Unit (Modulus of Resilience), kJ/m3 450
160
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 37
21
Strength to Weight: Bending, points 40
20
Thermal Diffusivity, mm2/s 58
3.7
Thermal Shock Resistance, points 18
14

Alloy Composition

Aluminum (Al), % 90.9 to 95.2
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
48 to 52
Copper (Cu), % 3.9 to 5.0
0
Iron (Fe), % 0 to 1.0
0 to 1.0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0.4 to 1.2
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
42.9 to 51
Niobium (Nb), % 0
1.0 to 1.8
Nitrogen (N), % 0
0 to 0.16
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.5 to 1.2
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0