MakeItFrom.com
Menu (ESC)

2025 Aluminum vs. EN 2.4816 Nickel

2025 aluminum belongs to the aluminum alloys classification, while EN 2.4816 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2025 aluminum and the bottom bar is EN 2.4816 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
170
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 15
34
Fatigue Strength, MPa 130
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Shear Strength, MPa 240
470
Tensile Strength: Ultimate (UTS), MPa 400
700
Tensile Strength: Yield (Proof), MPa 260
270

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 190
1150
Melting Completion (Liquidus), °C 640
1370
Melting Onset (Solidus), °C 520
1320
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 10
55
Density, g/cm3 3.0
8.5
Embodied Carbon, kg CO2/kg material 7.9
9.0
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1130
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
190
Resilience: Unit (Modulus of Resilience), kJ/m3 450
190
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 37
23
Strength to Weight: Bending, points 40
21
Thermal Diffusivity, mm2/s 58
3.8
Thermal Shock Resistance, points 18
20

Alloy Composition

Aluminum (Al), % 90.9 to 95.2
0 to 0.3
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0 to 0.1
14 to 17
Copper (Cu), % 3.9 to 5.0
0 to 0.5
Iron (Fe), % 0 to 1.0
6.0 to 10
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0.4 to 1.2
0 to 1.0
Nickel (Ni), % 0
72 to 80
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.5 to 1.2
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0 to 0.3
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0