MakeItFrom.com
Menu (ESC)

2025 Aluminum vs. Nickel 617

2025 aluminum belongs to the aluminum alloys classification, while nickel 617 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2025 aluminum and the bottom bar is nickel 617.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 15
40
Fatigue Strength, MPa 130
220
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
80
Shear Strength, MPa 240
510
Tensile Strength: Ultimate (UTS), MPa 400
740
Tensile Strength: Yield (Proof), MPa 260
280

Thermal Properties

Latent Heat of Fusion, J/g 400
330
Maximum Temperature: Mechanical, °C 190
1010
Melting Completion (Liquidus), °C 640
1380
Melting Onset (Solidus), °C 520
1330
Specific Heat Capacity, J/kg-K 870
450
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
75
Density, g/cm3 3.0
8.5
Embodied Carbon, kg CO2/kg material 7.9
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1130
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
230
Resilience: Unit (Modulus of Resilience), kJ/m3 450
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 37
24
Strength to Weight: Bending, points 40
21
Thermal Diffusivity, mm2/s 58
3.5
Thermal Shock Resistance, points 18
21

Alloy Composition

Aluminum (Al), % 90.9 to 95.2
0.8 to 1.5
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0 to 0.1
20 to 24
Cobalt (Co), % 0
10 to 15
Copper (Cu), % 3.9 to 5.0
0 to 0.5
Iron (Fe), % 0 to 1.0
0 to 3.0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0.4 to 1.2
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
44.5 to 62
Silicon (Si), % 0.5 to 1.2
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0