MakeItFrom.com
Menu (ESC)

2025 Aluminum vs. C14300 Copper

2025 aluminum belongs to the aluminum alloys classification, while C14300 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2025 aluminum and the bottom bar is C14300 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
120
Elongation at Break, % 15
2.0 to 42
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
43
Shear Strength, MPa 240
150 to 260
Tensile Strength: Ultimate (UTS), MPa 400
220 to 460
Tensile Strength: Yield (Proof), MPa 260
76 to 430

Thermal Properties

Latent Heat of Fusion, J/g 400
210
Maximum Temperature: Mechanical, °C 190
220
Melting Completion (Liquidus), °C 640
1080
Melting Onset (Solidus), °C 520
1050
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 150
380
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
96
Electrical Conductivity: Equal Weight (Specific), % IACS 120
96

Otherwise Unclassified Properties

Base Metal Price, % relative 10
31
Density, g/cm3 3.0
9.0
Embodied Carbon, kg CO2/kg material 7.9
2.6
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
9.0 to 72
Resilience: Unit (Modulus of Resilience), kJ/m3 450
25 to 810
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 37
6.8 to 14
Strength to Weight: Bending, points 40
9.1 to 15
Thermal Diffusivity, mm2/s 58
110
Thermal Shock Resistance, points 18
7.8 to 16

Alloy Composition

Aluminum (Al), % 90.9 to 95.2
0
Cadmium (Cd), % 0
0.050 to 0.15
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.9 to 5.0
99.9 to 99.95
Iron (Fe), % 0 to 1.0
0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0.4 to 1.2
0
Silicon (Si), % 0.5 to 1.2
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0