MakeItFrom.com
Menu (ESC)

2025 Aluminum vs. C69400 Brass

2025 aluminum belongs to the aluminum alloys classification, while C69400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2025 aluminum and the bottom bar is C69400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Elongation at Break, % 15
17
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
42
Shear Strength, MPa 240
350
Tensile Strength: Ultimate (UTS), MPa 400
570
Tensile Strength: Yield (Proof), MPa 260
270

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
920
Melting Onset (Solidus), °C 520
820
Specific Heat Capacity, J/kg-K 870
410
Thermal Conductivity, W/m-K 150
26
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
6.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
27
Density, g/cm3 3.0
8.3
Embodied Carbon, kg CO2/kg material 7.9
2.7
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1130
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
80
Resilience: Unit (Modulus of Resilience), kJ/m3 450
340
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 37
19
Strength to Weight: Bending, points 40
18
Thermal Diffusivity, mm2/s 58
7.7
Thermal Shock Resistance, points 18
20

Alloy Composition

Aluminum (Al), % 90.9 to 95.2
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.9 to 5.0
80 to 83
Iron (Fe), % 0 to 1.0
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0.4 to 1.2
0
Silicon (Si), % 0.5 to 1.2
3.5 to 4.5
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
11.5 to 16.5
Residuals, % 0
0 to 0.5