MakeItFrom.com
Menu (ESC)

2025 Aluminum vs. C70700 Copper-nickel

2025 aluminum belongs to the aluminum alloys classification, while C70700 copper-nickel belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2025 aluminum and the bottom bar is C70700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
73
Elastic (Young's, Tensile) Modulus, GPa 72
120
Elongation at Break, % 15
39
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
46
Shear Strength, MPa 240
220
Tensile Strength: Ultimate (UTS), MPa 400
320
Tensile Strength: Yield (Proof), MPa 260
110

Thermal Properties

Latent Heat of Fusion, J/g 400
220
Maximum Temperature: Mechanical, °C 190
220
Melting Completion (Liquidus), °C 640
1120
Melting Onset (Solidus), °C 520
1060
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 150
59
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
11
Electrical Conductivity: Equal Weight (Specific), % IACS 120
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
34
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 7.9
3.4
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1130
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
100
Resilience: Unit (Modulus of Resilience), kJ/m3 450
51
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 37
10
Strength to Weight: Bending, points 40
12
Thermal Diffusivity, mm2/s 58
17
Thermal Shock Resistance, points 18
12

Alloy Composition

Aluminum (Al), % 90.9 to 95.2
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.9 to 5.0
88.5 to 90.5
Iron (Fe), % 0 to 1.0
0 to 0.050
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0.4 to 1.2
0 to 0.5
Nickel (Ni), % 0
9.5 to 10.5
Silicon (Si), % 0.5 to 1.2
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.5