MakeItFrom.com
Menu (ESC)

2025 Aluminum vs. C71580 Copper-nickel

2025 aluminum belongs to the aluminum alloys classification, while C71580 copper-nickel belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2025 aluminum and the bottom bar is C71580 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
75
Elastic (Young's, Tensile) Modulus, GPa 72
140
Elongation at Break, % 15
40
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
51
Shear Strength, MPa 240
230
Tensile Strength: Ultimate (UTS), MPa 400
330
Tensile Strength: Yield (Proof), MPa 260
110

Thermal Properties

Latent Heat of Fusion, J/g 400
230
Maximum Temperature: Mechanical, °C 190
260
Melting Completion (Liquidus), °C 640
1180
Melting Onset (Solidus), °C 520
1120
Specific Heat Capacity, J/kg-K 870
400
Thermal Conductivity, W/m-K 150
39
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
4.7
Electrical Conductivity: Equal Weight (Specific), % IACS 120
4.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
41
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 7.9
5.1
Embodied Energy, MJ/kg 150
74
Embodied Water, L/kg 1130
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
100
Resilience: Unit (Modulus of Resilience), kJ/m3 450
47
Stiffness to Weight: Axial, points 13
8.5
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 37
10
Strength to Weight: Bending, points 40
12
Thermal Diffusivity, mm2/s 58
11
Thermal Shock Resistance, points 18
11

Alloy Composition

Aluminum (Al), % 90.9 to 95.2
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.9 to 5.0
65.5 to 71
Iron (Fe), % 0 to 1.0
0 to 0.5
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0.4 to 1.2
0 to 0.3
Nickel (Ni), % 0
29 to 33
Silicon (Si), % 0.5 to 1.2
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 0.050
Residuals, % 0
0 to 0.5