MakeItFrom.com
Menu (ESC)

2025 Aluminum vs. C83400 Brass

2025 aluminum belongs to the aluminum alloys classification, while C83400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2025 aluminum and the bottom bar is C83400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
110
Elongation at Break, % 15
30
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
42
Tensile Strength: Ultimate (UTS), MPa 400
240
Tensile Strength: Yield (Proof), MPa 260
69

Thermal Properties

Latent Heat of Fusion, J/g 400
200
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 640
1040
Melting Onset (Solidus), °C 520
1020
Specific Heat Capacity, J/kg-K 870
380
Thermal Conductivity, W/m-K 150
190
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
44
Electrical Conductivity: Equal Weight (Specific), % IACS 120
46

Otherwise Unclassified Properties

Base Metal Price, % relative 10
29
Density, g/cm3 3.0
8.7
Embodied Carbon, kg CO2/kg material 7.9
2.7
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
55
Resilience: Unit (Modulus of Resilience), kJ/m3 450
21
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 37
7.7
Strength to Weight: Bending, points 40
9.9
Thermal Diffusivity, mm2/s 58
57
Thermal Shock Resistance, points 18
8.4

Alloy Composition

Aluminum (Al), % 90.9 to 95.2
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.9 to 5.0
88 to 92
Iron (Fe), % 0 to 1.0
0 to 0.25
Lead (Pb), % 0
0 to 0.5
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0.4 to 1.2
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.5 to 1.2
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
8.0 to 12
Residuals, % 0
0 to 0.7