MakeItFrom.com
Menu (ESC)

2025 Aluminum vs. C91100 Bronze

2025 aluminum belongs to the aluminum alloys classification, while C91100 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2025 aluminum and the bottom bar is C91100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
100
Elongation at Break, % 15
2.0
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
39
Tensile Strength: Ultimate (UTS), MPa 400
240
Tensile Strength: Yield (Proof), MPa 260
170

Thermal Properties

Latent Heat of Fusion, J/g 400
180
Maximum Temperature: Mechanical, °C 190
160
Melting Completion (Liquidus), °C 640
950
Melting Onset (Solidus), °C 520
820
Specific Heat Capacity, J/kg-K 870
360
Thermal Conductivity, W/m-K 150
63
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
38
Density, g/cm3 3.0
8.7
Embodied Carbon, kg CO2/kg material 7.9
4.2
Embodied Energy, MJ/kg 150
69
Embodied Water, L/kg 1130
440

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
4.4
Resilience: Unit (Modulus of Resilience), kJ/m3 450
140
Stiffness to Weight: Axial, points 13
6.7
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 37
7.7
Strength to Weight: Bending, points 40
9.9
Thermal Diffusivity, mm2/s 58
20
Thermal Shock Resistance, points 18
9.1

Alloy Composition

Aluminum (Al), % 90.9 to 95.2
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.9 to 5.0
82 to 85
Iron (Fe), % 0 to 1.0
0 to 0.25
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0.4 to 1.2
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 1.0
Silicon (Si), % 0.5 to 1.2
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
15 to 17
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 0.25
Residuals, % 0 to 0.15
0