MakeItFrom.com
Menu (ESC)

2025 Aluminum vs. N06002 Nickel

2025 aluminum belongs to the aluminum alloys classification, while N06002 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2025 aluminum and the bottom bar is N06002 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 15
41
Fatigue Strength, MPa 130
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Shear Strength, MPa 240
520
Tensile Strength: Ultimate (UTS), MPa 400
760
Tensile Strength: Yield (Proof), MPa 260
310

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 190
990
Melting Completion (Liquidus), °C 640
1360
Melting Onset (Solidus), °C 520
1260
Specific Heat Capacity, J/kg-K 870
450
Thermal Conductivity, W/m-K 150
9.9
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
55
Density, g/cm3 3.0
8.5
Embodied Carbon, kg CO2/kg material 7.9
9.3
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1130
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
250
Resilience: Unit (Modulus of Resilience), kJ/m3 450
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 37
25
Strength to Weight: Bending, points 40
22
Thermal Diffusivity, mm2/s 58
2.6
Thermal Shock Resistance, points 18
19

Alloy Composition

Aluminum (Al), % 90.9 to 95.2
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0 to 0.1
20.5 to 23
Cobalt (Co), % 0
0.5 to 2.5
Copper (Cu), % 3.9 to 5.0
0
Iron (Fe), % 0 to 1.0
17 to 20
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0.4 to 1.2
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
42.3 to 54
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 1.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
0.2 to 1.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0