MakeItFrom.com
Menu (ESC)

2025 Aluminum vs. N06110 Nickel

2025 aluminum belongs to the aluminum alloys classification, while N06110 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2025 aluminum and the bottom bar is N06110 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 15
53
Fatigue Strength, MPa 130
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
84
Shear Strength, MPa 240
530
Tensile Strength: Ultimate (UTS), MPa 400
730
Tensile Strength: Yield (Proof), MPa 260
330

Thermal Properties

Latent Heat of Fusion, J/g 400
340
Maximum Temperature: Mechanical, °C 190
1020
Melting Completion (Liquidus), °C 640
1490
Melting Onset (Solidus), °C 520
1440
Specific Heat Capacity, J/kg-K 870
440
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
65
Density, g/cm3 3.0
8.6
Embodied Carbon, kg CO2/kg material 7.9
11
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
320
Resilience: Unit (Modulus of Resilience), kJ/m3 450
260
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 37
23
Strength to Weight: Bending, points 40
21
Thermal Shock Resistance, points 18
20

Alloy Composition

Aluminum (Al), % 90.9 to 95.2
0 to 1.0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
28 to 33
Copper (Cu), % 3.9 to 5.0
0 to 0.5
Iron (Fe), % 0 to 1.0
0 to 1.0
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0.4 to 1.2
0 to 1.0
Molybdenum (Mo), % 0
9.0 to 12
Nickel (Ni), % 0
51 to 62
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.5
Silicon (Si), % 0.5 to 1.2
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0 to 1.0
Tungsten (W), % 0
1.0 to 4.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0