MakeItFrom.com
Menu (ESC)

2025 Aluminum vs. N08031 Stainless Steel

2025 aluminum belongs to the aluminum alloys classification, while N08031 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2025 aluminum and the bottom bar is N08031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 15
45
Fatigue Strength, MPa 130
290
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Shear Strength, MPa 240
510
Tensile Strength: Ultimate (UTS), MPa 400
730
Tensile Strength: Yield (Proof), MPa 260
310

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 520
1390
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 23
18

Otherwise Unclassified Properties

Base Metal Price, % relative 10
39
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 7.9
7.1
Embodied Energy, MJ/kg 150
96
Embodied Water, L/kg 1130
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
270
Resilience: Unit (Modulus of Resilience), kJ/m3 450
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 37
25
Strength to Weight: Bending, points 40
22
Thermal Diffusivity, mm2/s 58
3.1
Thermal Shock Resistance, points 18
14

Alloy Composition

Aluminum (Al), % 90.9 to 95.2
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0 to 0.1
26 to 28
Copper (Cu), % 3.9 to 5.0
1.0 to 1.4
Iron (Fe), % 0 to 1.0
29 to 36.9
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0.4 to 1.2
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
30 to 32
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.5 to 1.2
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0