MakeItFrom.com
Menu (ESC)

2025 Aluminum vs. S35115 Stainless Steel

2025 aluminum belongs to the aluminum alloys classification, while S35115 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2025 aluminum and the bottom bar is S35115 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
210
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 15
46
Fatigue Strength, MPa 130
280
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Shear Strength, MPa 240
470
Tensile Strength: Ultimate (UTS), MPa 400
670
Tensile Strength: Yield (Proof), MPa 260
310

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 520
1370
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
26
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 7.9
4.8
Embodied Energy, MJ/kg 150
67
Embodied Water, L/kg 1130
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
250
Resilience: Unit (Modulus of Resilience), kJ/m3 450
240
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 37
24
Strength to Weight: Bending, points 40
22
Thermal Diffusivity, mm2/s 58
3.9
Thermal Shock Resistance, points 18
15

Alloy Composition

Aluminum (Al), % 90.9 to 95.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
23 to 25
Copper (Cu), % 3.9 to 5.0
0
Iron (Fe), % 0 to 1.0
47.6 to 55.8
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0.4 to 1.2
0 to 1.0
Molybdenum (Mo), % 0
1.5 to 2.5
Nickel (Ni), % 0
19 to 22
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.5 to 1.2
0.5 to 1.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0