MakeItFrom.com
Menu (ESC)

2030 Aluminum vs. 520.0 Aluminum

Both 2030 aluminum and 520.0 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2030 aluminum and the bottom bar is 520.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
66
Elongation at Break, % 5.6 to 8.0
14
Fatigue Strength, MPa 91 to 110
55
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
25
Shear Strength, MPa 220 to 250
230
Tensile Strength: Ultimate (UTS), MPa 370 to 420
330
Tensile Strength: Yield (Proof), MPa 240 to 270
170

Thermal Properties

Latent Heat of Fusion, J/g 390
390
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 510
480
Specific Heat Capacity, J/kg-K 870
910
Thermal Conductivity, W/m-K 130
87
Thermal Expansion, µm/m-K 23
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
21
Electrical Conductivity: Equal Weight (Specific), % IACS 99
72

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 3.1
2.6
Embodied Carbon, kg CO2/kg material 8.0
9.8
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1140
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
39
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
52
Strength to Weight: Axial, points 33 to 38
35
Strength to Weight: Bending, points 37 to 40
41
Thermal Diffusivity, mm2/s 50
37
Thermal Shock Resistance, points 16 to 19
14

Alloy Composition

Aluminum (Al), % 88.9 to 95.2
87.9 to 90.5
Bismuth (Bi), % 0 to 0.2
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.3 to 4.5
0 to 0.25
Iron (Fe), % 0 to 0.7
0 to 0.3
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.5 to 1.3
9.5 to 10.6
Manganese (Mn), % 0.2 to 1.0
0 to 0.15
Silicon (Si), % 0 to 0.8
0 to 0.25
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0 to 0.5
0 to 0.15
Residuals, % 0
0 to 0.15