MakeItFrom.com
Menu (ESC)

2030 Aluminum vs. 6105 Aluminum

Both 2030 aluminum and 6105 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common.

For each property being compared, the top bar is 2030 aluminum and the bottom bar is 6105 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
68
Elongation at Break, % 5.6 to 8.0
9.0 to 16
Fatigue Strength, MPa 91 to 110
95 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 220 to 250
120 to 170
Tensile Strength: Ultimate (UTS), MPa 370 to 420
190 to 280
Tensile Strength: Yield (Proof), MPa 240 to 270
120 to 270

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 190
160
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 510
600
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 130
180 to 190
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
46 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 99
150 to 170

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 3.1
2.7
Embodied Carbon, kg CO2/kg material 8.0
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
25 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
100 to 550
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
51
Strength to Weight: Axial, points 33 to 38
20 to 29
Strength to Weight: Bending, points 37 to 40
28 to 35
Thermal Diffusivity, mm2/s 50
72 to 79
Thermal Shock Resistance, points 16 to 19
8.6 to 12

Alloy Composition

Aluminum (Al), % 88.9 to 95.2
97.2 to 99
Bismuth (Bi), % 0 to 0.2
0
Chromium (Cr), % 0 to 0.1
0 to 0.1
Copper (Cu), % 3.3 to 4.5
0 to 0.1
Iron (Fe), % 0 to 0.7
0 to 0.35
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.5 to 1.3
0.45 to 0.8
Manganese (Mn), % 0.2 to 1.0
0 to 0.1
Silicon (Si), % 0 to 0.8
0.6 to 1.0
Titanium (Ti), % 0 to 0.2
0 to 0.1
Zinc (Zn), % 0 to 0.5
0 to 0.1
Residuals, % 0
0 to 0.15