MakeItFrom.com
Menu (ESC)

2030 Aluminum vs. AWS E240

2030 aluminum belongs to the aluminum alloys classification, while AWS E240 belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2030 aluminum and the bottom bar is AWS E240.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 5.6 to 8.0
17
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Tensile Strength: Ultimate (UTS), MPa 370 to 420
770

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 510
1350
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 23
15

Otherwise Unclassified Properties

Base Metal Price, % relative 10
14
Density, g/cm3 3.1
7.7
Embodied Carbon, kg CO2/kg material 8.0
3.0
Embodied Energy, MJ/kg 150
42
Embodied Water, L/kg 1140
160

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 33 to 38
28
Strength to Weight: Bending, points 37 to 40
24
Thermal Diffusivity, mm2/s 50
3.9
Thermal Shock Resistance, points 16 to 19
19

Alloy Composition

Aluminum (Al), % 88.9 to 95.2
0
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.1
17 to 19
Copper (Cu), % 3.3 to 4.5
0 to 0.75
Iron (Fe), % 0 to 0.7
58.6 to 68.4
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.5 to 1.3
0
Manganese (Mn), % 0.2 to 1.0
10.5 to 13.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0