MakeItFrom.com
Menu (ESC)

2030 Aluminum vs. AWS E90C-B9

2030 aluminum belongs to the aluminum alloys classification, while AWS E90C-B9 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2030 aluminum and the bottom bar is AWS E90C-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 5.6 to 8.0
18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 370 to 420
710
Tensile Strength: Yield (Proof), MPa 240 to 270
460

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 510
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 130
25
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 99
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.0
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.0
2.6
Embodied Energy, MJ/kg 150
37
Embodied Water, L/kg 1140
91

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
110
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
550
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 33 to 38
25
Strength to Weight: Bending, points 37 to 40
23
Thermal Diffusivity, mm2/s 50
6.9
Thermal Shock Resistance, points 16 to 19
20

Alloy Composition

Aluminum (Al), % 88.9 to 95.2
0 to 0.040
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
0.080 to 0.13
Chromium (Cr), % 0 to 0.1
8.0 to 10.5
Copper (Cu), % 3.3 to 4.5
0 to 0.2
Iron (Fe), % 0 to 0.7
84.4 to 90.9
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.5 to 1.3
0
Manganese (Mn), % 0.2 to 1.0
0 to 1.2
Molybdenum (Mo), % 0
0.85 to 1.2
Nickel (Ni), % 0
0 to 0.8
Niobium (Nb), % 0
0.020 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.8
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0.15 to 0.3
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.5