MakeItFrom.com
Menu (ESC)

2030 Aluminum vs. EN 1.4567 Stainless Steel

2030 aluminum belongs to the aluminum alloys classification, while EN 1.4567 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2030 aluminum and the bottom bar is EN 1.4567 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 5.6 to 8.0
22 to 51
Fatigue Strength, MPa 91 to 110
190 to 260
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 220 to 250
390 to 490
Tensile Strength: Ultimate (UTS), MPa 370 to 420
550 to 780
Tensile Strength: Yield (Proof), MPa 240 to 270
200 to 390

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 190
930
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 510
1370
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
16
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.0
3.1
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1140
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
150 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
100 to 400
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 33 to 38
19 to 27
Strength to Weight: Bending, points 37 to 40
19 to 24
Thermal Diffusivity, mm2/s 50
3.0
Thermal Shock Resistance, points 16 to 19
12 to 17

Alloy Composition

Aluminum (Al), % 88.9 to 95.2
0
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0 to 0.1
17 to 19
Copper (Cu), % 3.3 to 4.5
3.0 to 4.0
Iron (Fe), % 0 to 0.7
63.3 to 71.5
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.5 to 1.3
0
Manganese (Mn), % 0.2 to 1.0
0 to 2.0
Nickel (Ni), % 0
8.5 to 10.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0