MakeItFrom.com
Menu (ESC)

2030 Aluminum vs. EN 1.5503 Steel

2030 aluminum belongs to the aluminum alloys classification, while EN 1.5503 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2030 aluminum and the bottom bar is EN 1.5503 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 5.6 to 8.0
12 to 17
Fatigue Strength, MPa 91 to 110
180 to 280
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 220 to 250
270 to 320
Tensile Strength: Ultimate (UTS), MPa 370 to 420
400 to 520
Tensile Strength: Yield (Proof), MPa 240 to 270
270 to 430

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 130
52
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 99
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.8
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1140
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
41 to 81
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
200 to 490
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 33 to 38
14 to 19
Strength to Weight: Bending, points 37 to 40
15 to 18
Thermal Diffusivity, mm2/s 50
14
Thermal Shock Resistance, points 16 to 19
12 to 15

Alloy Composition

Aluminum (Al), % 88.9 to 95.2
0
Bismuth (Bi), % 0 to 0.2
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.16 to 0.2
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.3 to 4.5
0 to 0.25
Iron (Fe), % 0 to 0.7
98.4 to 99.239
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.5 to 1.3
0
Manganese (Mn), % 0.2 to 1.0
0.6 to 0.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.8
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0