MakeItFrom.com
Menu (ESC)

2030 Aluminum vs. Grade CY40 Nickel

2030 aluminum belongs to the aluminum alloys classification, while grade CY40 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2030 aluminum and the bottom bar is grade CY40 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 5.6 to 8.0
34
Fatigue Strength, MPa 91 to 110
160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 370 to 420
540
Tensile Strength: Yield (Proof), MPa 240 to 270
220

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 190
960
Melting Completion (Liquidus), °C 640
1350
Melting Onset (Solidus), °C 510
1300
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 130
14
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 99
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 10
55
Density, g/cm3 3.1
8.4
Embodied Carbon, kg CO2/kg material 8.0
9.1
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1140
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
150
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
130
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
23
Strength to Weight: Axial, points 33 to 38
18
Strength to Weight: Bending, points 37 to 40
18
Thermal Diffusivity, mm2/s 50
3.7
Thermal Shock Resistance, points 16 to 19
16

Alloy Composition

Aluminum (Al), % 88.9 to 95.2
0
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.4
Chromium (Cr), % 0 to 0.1
14 to 17
Copper (Cu), % 3.3 to 4.5
0
Iron (Fe), % 0 to 0.7
0 to 11
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.5 to 1.3
0
Manganese (Mn), % 0.2 to 1.0
0 to 1.5
Nickel (Ni), % 0
67 to 86
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.8
0 to 3.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0