MakeItFrom.com
Menu (ESC)

2030 Aluminum vs. Nickel 684

2030 aluminum belongs to the aluminum alloys classification, while nickel 684 belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2030 aluminum and the bottom bar is nickel 684.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 5.6 to 8.0
11
Fatigue Strength, MPa 91 to 110
390
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
76
Shear Strength, MPa 220 to 250
710
Tensile Strength: Ultimate (UTS), MPa 370 to 420
1190
Tensile Strength: Yield (Proof), MPa 240 to 270
800

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 190
1000
Melting Completion (Liquidus), °C 640
1370
Melting Onset (Solidus), °C 510
1320
Specific Heat Capacity, J/kg-K 870
470
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 10
75
Density, g/cm3 3.1
8.3
Embodied Carbon, kg CO2/kg material 8.0
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1140
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
120
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
1610
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
23
Strength to Weight: Axial, points 33 to 38
40
Strength to Weight: Bending, points 37 to 40
30
Thermal Shock Resistance, points 16 to 19
34

Alloy Composition

Aluminum (Al), % 88.9 to 95.2
2.5 to 3.3
Bismuth (Bi), % 0 to 0.2
0
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
15 to 20
Cobalt (Co), % 0
13 to 20
Copper (Cu), % 3.3 to 4.5
0 to 0.15
Iron (Fe), % 0 to 0.7
0 to 4.0
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.5 to 1.3
0
Manganese (Mn), % 0.2 to 1.0
0 to 0.75
Molybdenum (Mo), % 0
3.0 to 5.0
Nickel (Ni), % 0
42.7 to 64
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.8
0 to 0.75
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
2.5 to 3.3
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0