MakeItFrom.com
Menu (ESC)

2030 Aluminum vs. Nickel 890

2030 aluminum belongs to the aluminum alloys classification, while nickel 890 belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2030 aluminum and the bottom bar is nickel 890.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 5.6 to 8.0
39
Fatigue Strength, MPa 91 to 110
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 220 to 250
400
Tensile Strength: Ultimate (UTS), MPa 370 to 420
590
Tensile Strength: Yield (Proof), MPa 240 to 270
230

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 190
1000
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 510
1340
Specific Heat Capacity, J/kg-K 870
480
Thermal Expansion, µm/m-K 23
14

Otherwise Unclassified Properties

Base Metal Price, % relative 10
47
Density, g/cm3 3.1
8.1
Embodied Carbon, kg CO2/kg material 8.0
8.2
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1140
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
180
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 33 to 38
20
Strength to Weight: Bending, points 37 to 40
19
Thermal Shock Resistance, points 16 to 19
15

Alloy Composition

Aluminum (Al), % 88.9 to 95.2
0.050 to 0.6
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
0.060 to 0.14
Chromium (Cr), % 0 to 0.1
23.5 to 28.5
Copper (Cu), % 3.3 to 4.5
0 to 0.75
Iron (Fe), % 0 to 0.7
17.3 to 33.9
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.5 to 1.3
0
Manganese (Mn), % 0.2 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
40 to 45
Niobium (Nb), % 0
0.2 to 1.0
Silicon (Si), % 0 to 0.8
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Tantalum (Ta), % 0
0.1 to 0.6
Titanium (Ti), % 0 to 0.2
0.15 to 0.6
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0