MakeItFrom.com
Menu (ESC)

2030 Aluminum vs. SAE-AISI A2 Steel

2030 aluminum belongs to the aluminum alloys classification, while SAE-AISI A2 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2030 aluminum and the bottom bar is SAE-AISI A2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 370 to 420
710 to 2040

Thermal Properties

Latent Heat of Fusion, J/g 390
260
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 510
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 130
38
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 99
9.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
5.5
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1140
73

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 33 to 38
25 to 73
Strength to Weight: Bending, points 37 to 40
23 to 46
Thermal Diffusivity, mm2/s 50
10
Thermal Shock Resistance, points 16 to 19
25 to 71

Alloy Composition

Aluminum (Al), % 88.9 to 95.2
0
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
1.0 to 1.1
Chromium (Cr), % 0 to 0.1
4.8 to 5.5
Copper (Cu), % 3.3 to 4.5
0 to 0.25
Iron (Fe), % 0 to 0.7
89.4 to 93.3
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.5 to 1.3
0
Manganese (Mn), % 0.2 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
0.9 to 1.4
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.8
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0.15 to 0.5
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0