MakeItFrom.com
Menu (ESC)

2030 Aluminum vs. SAE-AISI H26 Steel

2030 aluminum belongs to the aluminum alloys classification, while SAE-AISI H26 steel belongs to the iron alloys. There are 21 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2030 aluminum and the bottom bar is SAE-AISI H26 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 370 to 420
720 to 2100

Thermal Properties

Latent Heat of Fusion, J/g 390
240
Melting Completion (Liquidus), °C 640
1810
Melting Onset (Solidus), °C 510
1760
Specific Heat Capacity, J/kg-K 870
410
Thermal Conductivity, W/m-K 130
22
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
45
Density, g/cm3 3.1
9.3
Embodied Carbon, kg CO2/kg material 8.0
8.1
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1140
90

Common Calculations

Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 45
21
Strength to Weight: Axial, points 33 to 38
22 to 63
Strength to Weight: Bending, points 37 to 40
19 to 39
Thermal Diffusivity, mm2/s 50
5.6
Thermal Shock Resistance, points 16 to 19
22 to 63

Alloy Composition

Aluminum (Al), % 88.9 to 95.2
0
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
0.45 to 0.55
Chromium (Cr), % 0 to 0.1
3.8 to 4.5
Copper (Cu), % 3.3 to 4.5
0 to 0.25
Iron (Fe), % 0 to 0.7
73.3 to 77.5
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.5 to 1.3
0
Manganese (Mn), % 0.2 to 1.0
0.15 to 0.4
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.8
0.15 to 0.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
17.3 to 19
Vanadium (V), % 0
0.75 to 1.3
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0