MakeItFrom.com
Menu (ESC)

2030 Aluminum vs. Type 4 Niobium

2030 aluminum belongs to the aluminum alloys classification, while Type 4 niobium belongs to the otherwise unclassified metals. There are 20 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2030 aluminum and the bottom bar is Type 4 niobium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 5.6 to 8.0
23
Poisson's Ratio 0.33
0.4
Shear Modulus, GPa 26
38
Tensile Strength: Ultimate (UTS), MPa 370 to 420
220
Tensile Strength: Yield (Proof), MPa 240 to 270
140

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Specific Heat Capacity, J/kg-K 870
270
Thermal Conductivity, W/m-K 130
42
Thermal Expansion, µm/m-K 23
7.3

Otherwise Unclassified Properties

Density, g/cm3 3.1
8.6
Embodied Water, L/kg 1140
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
44
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
93
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 45
18
Strength to Weight: Axial, points 33 to 38
7.2
Strength to Weight: Bending, points 37 to 40
9.5
Thermal Diffusivity, mm2/s 50
18
Thermal Shock Resistance, points 16 to 19
21

Alloy Composition

Aluminum (Al), % 88.9 to 95.2
0
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.3 to 4.5
0
Hafnium (Hf), % 0
0 to 0.020
Hydrogen (H), % 0
0 to 0.0015
Iron (Fe), % 0 to 0.7
0 to 0.010
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.5 to 1.3
0
Manganese (Mn), % 0.2 to 1.0
0
Molybdenum (Mo), % 0
0 to 0.050
Nickel (Ni), % 0
0 to 0.0050
Niobium (Nb), % 0
98.1 to 99.2
Nitrogen (N), % 0
0 to 0.010
Oxygen (O), % 0
0 to 0.025
Silicon (Si), % 0 to 0.8
0 to 0.0050
Tantalum (Ta), % 0
0 to 0.5
Titanium (Ti), % 0 to 0.2
0 to 0.020
Tungsten (W), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.5
0
Zirconium (Zr), % 0
0.8 to 1.2
Residuals, % 0 to 0.3
0