MakeItFrom.com
Menu (ESC)

2030 Aluminum vs. C70260 Copper

2030 aluminum belongs to the aluminum alloys classification, while C70260 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2030 aluminum and the bottom bar is C70260 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 5.6 to 8.0
9.5 to 19
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Shear Strength, MPa 220 to 250
320 to 450
Tensile Strength: Ultimate (UTS), MPa 370 to 420
520 to 760
Tensile Strength: Yield (Proof), MPa 240 to 270
410 to 650

Thermal Properties

Latent Heat of Fusion, J/g 390
220
Maximum Temperature: Mechanical, °C 190
200
Melting Completion (Liquidus), °C 640
1060
Melting Onset (Solidus), °C 510
1040
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 130
160
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
40 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 99
40 to 51

Otherwise Unclassified Properties

Base Metal Price, % relative 10
31
Density, g/cm3 3.1
8.9
Embodied Carbon, kg CO2/kg material 8.0
2.7
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
46 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
710 to 1810
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 45
18
Strength to Weight: Axial, points 33 to 38
16 to 24
Strength to Weight: Bending, points 37 to 40
16 to 21
Thermal Diffusivity, mm2/s 50
45
Thermal Shock Resistance, points 16 to 19
18 to 27

Alloy Composition

Aluminum (Al), % 88.9 to 95.2
0
Bismuth (Bi), % 0 to 0.2
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.3 to 4.5
95.8 to 98.8
Iron (Fe), % 0 to 0.7
0
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.5 to 1.3
0
Manganese (Mn), % 0.2 to 1.0
0
Nickel (Ni), % 0
1.0 to 3.0
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.8
0.2 to 0.7
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.5