MakeItFrom.com
Menu (ESC)

2030 Aluminum vs. N08700 Stainless Steel

2030 aluminum belongs to the aluminum alloys classification, while N08700 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2030 aluminum and the bottom bar is N08700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 5.6 to 8.0
32
Fatigue Strength, MPa 91 to 110
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Shear Strength, MPa 220 to 250
410
Tensile Strength: Ultimate (UTS), MPa 370 to 420
620
Tensile Strength: Yield (Proof), MPa 240 to 270
270

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 510
1400
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 99
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
32
Density, g/cm3 3.1
8.1
Embodied Carbon, kg CO2/kg material 8.0
6.0
Embodied Energy, MJ/kg 150
82
Embodied Water, L/kg 1140
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
160
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 33 to 38
21
Strength to Weight: Bending, points 37 to 40
20
Thermal Diffusivity, mm2/s 50
3.5
Thermal Shock Resistance, points 16 to 19
14

Alloy Composition

Aluminum (Al), % 88.9 to 95.2
0
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0 to 0.1
19 to 23
Copper (Cu), % 3.3 to 4.5
0 to 0.5
Iron (Fe), % 0 to 0.7
42 to 52.7
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.5 to 1.3
0
Manganese (Mn), % 0.2 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
4.3 to 5.0
Nickel (Ni), % 0
24 to 26
Niobium (Nb), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0