MakeItFrom.com
Menu (ESC)

2030 Aluminum vs. S41050 Stainless Steel

2030 aluminum belongs to the aluminum alloys classification, while S41050 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2030 aluminum and the bottom bar is S41050 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 5.6 to 8.0
25
Fatigue Strength, MPa 91 to 110
160
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 220 to 250
300
Tensile Strength: Ultimate (UTS), MPa 370 to 420
470
Tensile Strength: Yield (Proof), MPa 240 to 270
230

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 190
720
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 510
1400
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 130
27
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 99
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.0
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.0
1.9
Embodied Energy, MJ/kg 150
27
Embodied Water, L/kg 1140
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
98
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 33 to 38
17
Strength to Weight: Bending, points 37 to 40
17
Thermal Diffusivity, mm2/s 50
7.2
Thermal Shock Resistance, points 16 to 19
17

Alloy Composition

Aluminum (Al), % 88.9 to 95.2
0
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0 to 0.1
10.5 to 12.5
Copper (Cu), % 3.3 to 4.5
0
Iron (Fe), % 0 to 0.7
84.2 to 88.9
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.5 to 1.3
0
Manganese (Mn), % 0.2 to 1.0
0 to 1.0
Nickel (Ni), % 0
0.6 to 1.1
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.3
0