MakeItFrom.com
Menu (ESC)

2036 Aluminum vs. AISI 201 Stainless Steel

2036 aluminum belongs to the aluminum alloys classification, while AISI 201 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2036 aluminum and the bottom bar is AISI 201 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 24
4.6 to 51
Fatigue Strength, MPa 130
280 to 600
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 210
450 to 840
Tensile Strength: Ultimate (UTS), MPa 340
650 to 1450
Tensile Strength: Yield (Proof), MPa 200
300 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 190
880
Melting Completion (Liquidus), °C 650
1410
Melting Onset (Solidus), °C 560
1370
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 160
15
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
12
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 8.1
2.6
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1160
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
61 to 340
Resilience: Unit (Modulus of Resilience), kJ/m3 270
230 to 2970
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 33
23 to 52
Strength to Weight: Bending, points 38
22 to 37
Thermal Diffusivity, mm2/s 62
4.0
Thermal Shock Resistance, points 15
14 to 32

Alloy Composition

Aluminum (Al), % 94.4 to 97.4
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
16 to 18
Copper (Cu), % 2.2 to 3.0
0
Iron (Fe), % 0 to 0.5
67.5 to 75
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.1 to 0.4
5.5 to 7.5
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0