MakeItFrom.com
Menu (ESC)

2036 Aluminum vs. EN 1.4598 Stainless Steel

2036 aluminum belongs to the aluminum alloys classification, while EN 1.4598 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2036 aluminum and the bottom bar is EN 1.4598 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 24
46
Fatigue Strength, MPa 130
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 210
420
Tensile Strength: Ultimate (UTS), MPa 340
600
Tensile Strength: Yield (Proof), MPa 200
230

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 190
950
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 560
1390
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 160
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
19
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 8.1
3.8
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1160
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
220
Resilience: Unit (Modulus of Resilience), kJ/m3 270
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 33
21
Strength to Weight: Bending, points 38
20
Thermal Diffusivity, mm2/s 62
4.1
Thermal Shock Resistance, points 15
14

Alloy Composition

Aluminum (Al), % 94.4 to 97.4
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
16.5 to 18.5
Copper (Cu), % 2.2 to 3.0
1.3 to 1.8
Iron (Fe), % 0 to 0.5
60.8 to 70.1
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.1 to 0.4
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 0
10 to 13
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0
0.1 to 0.2
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0