MakeItFrom.com
Menu (ESC)

2036 Aluminum vs. EN 1.5026 Steel

2036 aluminum belongs to the aluminum alloys classification, while EN 1.5026 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2036 aluminum and the bottom bar is EN 1.5026 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 340
660 to 1980

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 560
1390
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 160
47
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.9
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 8.1
1.5
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1160
46

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 33
24 to 71
Strength to Weight: Bending, points 38
22 to 45
Thermal Diffusivity, mm2/s 62
13
Thermal Shock Resistance, points 15
20 to 60

Alloy Composition

Aluminum (Al), % 94.4 to 97.4
0
Carbon (C), % 0
0.52 to 0.6
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 2.2 to 3.0
0
Iron (Fe), % 0 to 0.5
96.5 to 97.3
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.1 to 0.4
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.5
1.6 to 2.0
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0