MakeItFrom.com
Menu (ESC)

2036 Aluminum vs. EN 1.7380 Steel

2036 aluminum belongs to the aluminum alloys classification, while EN 1.7380 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2036 aluminum and the bottom bar is EN 1.7380 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 24
19 to 20
Fatigue Strength, MPa 130
200 to 230
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Shear Strength, MPa 210
330 to 350
Tensile Strength: Ultimate (UTS), MPa 340
540 to 550
Tensile Strength: Yield (Proof), MPa 200
290 to 330

Thermal Properties

Latent Heat of Fusion, J/g 390
260
Maximum Temperature: Mechanical, °C 190
460
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 560
1430
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 160
39
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
3.8
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 8.1
1.8
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1160
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
87 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 270
230 to 280
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 33
19 to 20
Strength to Weight: Bending, points 38
19
Thermal Diffusivity, mm2/s 62
11
Thermal Shock Resistance, points 15
15 to 16

Alloy Composition

Aluminum (Al), % 94.4 to 97.4
0
Carbon (C), % 0
0.080 to 0.14
Chromium (Cr), % 0 to 0.1
2.0 to 2.5
Copper (Cu), % 2.2 to 3.0
0 to 0.3
Iron (Fe), % 0 to 0.5
94.6 to 96.6
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.1 to 0.4
0.4 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.1
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0