MakeItFrom.com
Menu (ESC)

2036 Aluminum vs. EN AC-42100 Aluminum

Both 2036 aluminum and EN AC-42100 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2036 aluminum and the bottom bar is EN AC-42100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 24
3.4 to 9.0
Fatigue Strength, MPa 130
76 to 82
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 340
280 to 290
Tensile Strength: Yield (Proof), MPa 200
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 390
500
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 650
610
Melting Onset (Solidus), °C 560
600
Specific Heat Capacity, J/kg-K 890
910
Thermal Conductivity, W/m-K 160
150
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
41
Electrical Conductivity: Equal Weight (Specific), % IACS 130
140

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.9
2.6
Embodied Carbon, kg CO2/kg material 8.1
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1160
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
9.1 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 270
300 to 370
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 48
53
Strength to Weight: Axial, points 33
30 to 31
Strength to Weight: Bending, points 38
37 to 38
Thermal Diffusivity, mm2/s 62
66
Thermal Shock Resistance, points 15
13

Alloy Composition

Aluminum (Al), % 94.4 to 97.4
91.3 to 93.3
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 2.2 to 3.0
0 to 0.050
Iron (Fe), % 0 to 0.5
0 to 0.19
Magnesium (Mg), % 0.3 to 0.6
0.25 to 0.45
Manganese (Mn), % 0.1 to 0.4
0 to 0.1
Silicon (Si), % 0 to 0.5
6.5 to 7.5
Titanium (Ti), % 0 to 0.15
0 to 0.25
Zinc (Zn), % 0 to 0.25
0 to 0.070
Residuals, % 0
0 to 0.1