MakeItFrom.com
Menu (ESC)

2036 Aluminum vs. CR005A Copper

2036 aluminum belongs to the aluminum alloys classification, while CR005A copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2036 aluminum and the bottom bar is CR005A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 24
15
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
43
Tensile Strength: Ultimate (UTS), MPa 340
230
Tensile Strength: Yield (Proof), MPa 200
140

Thermal Properties

Latent Heat of Fusion, J/g 390
210
Maximum Temperature: Mechanical, °C 190
200
Melting Completion (Liquidus), °C 650
1090
Melting Onset (Solidus), °C 560
1040
Specific Heat Capacity, J/kg-K 890
390
Thermal Conductivity, W/m-K 160
380
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
100
Electrical Conductivity: Equal Weight (Specific), % IACS 130
100

Otherwise Unclassified Properties

Base Metal Price, % relative 10
31
Density, g/cm3 2.9
9.0
Embodied Carbon, kg CO2/kg material 8.1
2.6
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1160
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
31
Resilience: Unit (Modulus of Resilience), kJ/m3 270
83
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 48
18
Strength to Weight: Axial, points 33
7.1
Strength to Weight: Bending, points 38
9.3
Thermal Diffusivity, mm2/s 62
110
Thermal Shock Resistance, points 15
8.1

Alloy Composition

Aluminum (Al), % 94.4 to 97.4
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 2.2 to 3.0
99.9 to 100
Iron (Fe), % 0 to 0.5
0
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.1 to 0.4
0
Oxygen (O), % 0
0 to 0.040
Silicon (Si), % 0 to 0.5
0
Silver (Ag), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0