MakeItFrom.com
Menu (ESC)

2036 Aluminum vs. S44635 Stainless Steel

2036 aluminum belongs to the aluminum alloys classification, while S44635 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2036 aluminum and the bottom bar is S44635 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 24
23
Fatigue Strength, MPa 130
390
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
81
Shear Strength, MPa 210
450
Tensile Strength: Ultimate (UTS), MPa 340
710
Tensile Strength: Yield (Proof), MPa 200
580

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 560
1420
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 160
16
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
22
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.1
4.4
Embodied Energy, MJ/kg 150
62
Embodied Water, L/kg 1160
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
150
Resilience: Unit (Modulus of Resilience), kJ/m3 270
810
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 48
25
Strength to Weight: Axial, points 33
25
Strength to Weight: Bending, points 38
23
Thermal Diffusivity, mm2/s 62
4.4
Thermal Shock Resistance, points 15
23

Alloy Composition

Aluminum (Al), % 94.4 to 97.4
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0 to 0.1
24.5 to 26
Copper (Cu), % 2.2 to 3.0
0
Iron (Fe), % 0 to 0.5
61.5 to 68.5
Magnesium (Mg), % 0.3 to 0.6
0
Manganese (Mn), % 0.1 to 0.4
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0
3.5 to 4.5
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0.2 to 0.8
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0