MakeItFrom.com
Menu (ESC)

2095 Aluminum vs. 5086 Aluminum

Both 2095 aluminum and 5086 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 2095 aluminum and the bottom bar is 5086 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
68
Elongation at Break, % 8.5
1.7 to 20
Fatigue Strength, MPa 200
88 to 180
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 410
160 to 230
Tensile Strength: Ultimate (UTS), MPa 700
270 to 390
Tensile Strength: Yield (Proof), MPa 610
110 to 320

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 210
190
Melting Completion (Liquidus), °C 660
640
Melting Onset (Solidus), °C 540
590
Specific Heat Capacity, J/kg-K 910
900
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
31
Electrical Conductivity: Equal Weight (Specific), % IACS 110
100

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.6
8.8
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1470
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
5.8 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 2640
86 to 770
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 65
28 to 40
Strength to Weight: Bending, points 59
34 to 44
Thermal Diffusivity, mm2/s 49
52
Thermal Shock Resistance, points 31
12 to 17

Alloy Composition

Aluminum (Al), % 91.3 to 94.9
93 to 96.3
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 3.9 to 4.6
0 to 0.1
Iron (Fe), % 0 to 0.15
0 to 0.5
Lithium (Li), % 0.7 to 1.5
0
Magnesium (Mg), % 0.25 to 0.8
3.5 to 4.5
Manganese (Mn), % 0 to 0.25
0.2 to 0.7
Silicon (Si), % 0 to 0.12
0 to 0.4
Silver (Ag), % 0.25 to 0.6
0
Titanium (Ti), % 0 to 0.1
0 to 0.15
Zinc (Zn), % 0 to 0.25
0 to 0.25
Zirconium (Zr), % 0.040 to 0.18
0
Residuals, % 0
0 to 0.15