MakeItFrom.com
Menu (ESC)

2095 Aluminum vs. 5657 Aluminum

Both 2095 aluminum and 5657 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2095 aluminum and the bottom bar is 5657 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
68
Elongation at Break, % 8.5
6.6 to 15
Fatigue Strength, MPa 200
74 to 88
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 410
92 to 110
Tensile Strength: Ultimate (UTS), MPa 700
150 to 200
Tensile Strength: Yield (Proof), MPa 610
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 210
180
Melting Completion (Liquidus), °C 660
660
Melting Onset (Solidus), °C 540
640
Specific Heat Capacity, J/kg-K 910
900
Thermal Conductivity, W/m-K 130
210
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
54
Electrical Conductivity: Equal Weight (Specific), % IACS 110
180

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.6
8.4
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 1470
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
9.7 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 2640
140 to 200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 65
15 to 20
Strength to Weight: Bending, points 59
23 to 28
Thermal Diffusivity, mm2/s 49
84
Thermal Shock Resistance, points 31
6.7 to 8.6

Alloy Composition

Aluminum (Al), % 91.3 to 94.9
98.5 to 99.4
Copper (Cu), % 3.9 to 4.6
0 to 0.1
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.15
0 to 0.1
Lithium (Li), % 0.7 to 1.5
0
Magnesium (Mg), % 0.25 to 0.8
0.6 to 1.0
Manganese (Mn), % 0 to 0.25
0 to 0.030
Silicon (Si), % 0 to 0.12
0 to 0.080
Silver (Ag), % 0.25 to 0.6
0
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.25
0 to 0.050
Zirconium (Zr), % 0.040 to 0.18
0
Residuals, % 0
0 to 0.050