MakeItFrom.com
Menu (ESC)

2095 Aluminum vs. AWS E100C-K3

2095 aluminum belongs to the aluminum alloys classification, while AWS E100C-K3 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2095 aluminum and the bottom bar is AWS E100C-K3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 8.5
18
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 700
770
Tensile Strength: Yield (Proof), MPa 610
700

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 540
1410
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
48
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
3.4
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.6
1.7
Embodied Energy, MJ/kg 160
23
Embodied Water, L/kg 1470
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
130
Resilience: Unit (Modulus of Resilience), kJ/m3 2640
1290
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 65
27
Strength to Weight: Bending, points 59
24
Thermal Diffusivity, mm2/s 49
13
Thermal Shock Resistance, points 31
23

Alloy Composition

Aluminum (Al), % 91.3 to 94.9
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 3.9 to 4.6
0 to 0.35
Iron (Fe), % 0 to 0.15
92.6 to 98.5
Lithium (Li), % 0.7 to 1.5
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0.75 to 2.3
Molybdenum (Mo), % 0
0.25 to 0.65
Nickel (Ni), % 0
0.5 to 2.5
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.12
0 to 0.8
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.18
0
Residuals, % 0
0 to 0.5