MakeItFrom.com
Menu (ESC)

2095 Aluminum vs. EN 1.3961 Alloy

2095 aluminum belongs to the aluminum alloys classification, while EN 1.3961 alloy belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2095 aluminum and the bottom bar is EN 1.3961 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 8.5
31
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
72
Shear Strength, MPa 410
300
Tensile Strength: Ultimate (UTS), MPa 700
450
Tensile Strength: Yield (Proof), MPa 610
310

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Melting Completion (Liquidus), °C 660
1430
Melting Onset (Solidus), °C 540
1390
Specific Heat Capacity, J/kg-K 910
460
Thermal Expansion, µm/m-K 23
1.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
25
Density, g/cm3 3.0
8.2
Embodied Carbon, kg CO2/kg material 8.6
4.8
Embodied Energy, MJ/kg 160
66
Embodied Water, L/kg 1470
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
130
Resilience: Unit (Modulus of Resilience), kJ/m3 2640
250
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 65
15
Strength to Weight: Bending, points 59
16
Thermal Shock Resistance, points 31
130

Alloy Composition

Aluminum (Al), % 91.3 to 94.9
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 3.9 to 4.6
0
Iron (Fe), % 0 to 0.15
60.7 to 65
Lithium (Li), % 0.7 to 1.5
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0 to 0.5
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0
35 to 37
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.12
0 to 0.5
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.18
0
Residuals, % 0 to 0.15
0