MakeItFrom.com
Menu (ESC)

2095 Aluminum vs. EN 2.4815 Cast Nickel

2095 aluminum belongs to the aluminum alloys classification, while EN 2.4815 cast nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2095 aluminum and the bottom bar is EN 2.4815 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 8.5
3.4
Fatigue Strength, MPa 200
89
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 700
460
Tensile Strength: Yield (Proof), MPa 610
220

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 210
1100
Melting Completion (Liquidus), °C 660
1510
Melting Onset (Solidus), °C 540
1450
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
25
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
47
Density, g/cm3 3.0
8.3
Embodied Carbon, kg CO2/kg material 8.6
7.9
Embodied Energy, MJ/kg 160
110
Embodied Water, L/kg 1470
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
13
Resilience: Unit (Modulus of Resilience), kJ/m3 2640
130
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 65
15
Strength to Weight: Bending, points 59
16
Thermal Diffusivity, mm2/s 49
6.4
Thermal Shock Resistance, points 31
17

Alloy Composition

Aluminum (Al), % 91.3 to 94.9
0
Carbon (C), % 0
0.35 to 0.65
Chromium (Cr), % 0
12 to 18
Copper (Cu), % 3.9 to 4.6
0
Iron (Fe), % 0 to 0.15
9.8 to 28.7
Lithium (Li), % 0.7 to 1.5
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0 to 2.0
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0
58 to 66
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.12
1.0 to 2.5
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.18
0
Residuals, % 0 to 0.15
0