MakeItFrom.com
Menu (ESC)

2095 Aluminum vs. EN 2.4851 Nickel

2095 aluminum belongs to the aluminum alloys classification, while EN 2.4851 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2095 aluminum and the bottom bar is EN 2.4851 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 8.5
34
Fatigue Strength, MPa 200
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 410
430
Tensile Strength: Ultimate (UTS), MPa 700
650
Tensile Strength: Yield (Proof), MPa 610
230

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 210
1200
Melting Completion (Liquidus), °C 660
1360
Melting Onset (Solidus), °C 540
1310
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
49
Density, g/cm3 3.0
8.2
Embodied Carbon, kg CO2/kg material 8.6
8.1
Embodied Energy, MJ/kg 160
120
Embodied Water, L/kg 1470
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
170
Resilience: Unit (Modulus of Resilience), kJ/m3 2640
130
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 65
22
Strength to Weight: Bending, points 59
20
Thermal Diffusivity, mm2/s 49
2.9
Thermal Shock Resistance, points 31
17

Alloy Composition

Aluminum (Al), % 91.3 to 94.9
1.0 to 1.7
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0.030 to 0.1
Chromium (Cr), % 0
21 to 25
Copper (Cu), % 3.9 to 4.6
0 to 0.5
Iron (Fe), % 0 to 0.15
7.7 to 18
Lithium (Li), % 0.7 to 1.5
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0 to 1.0
Nickel (Ni), % 0
58 to 63
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.12
0 to 0.5
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0 to 0.5
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.18
0
Residuals, % 0 to 0.15
0