MakeItFrom.com
Menu (ESC)

2095 Aluminum vs. Nickel 908

2095 aluminum belongs to the aluminum alloys classification, while nickel 908 belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2095 aluminum and the bottom bar is nickel 908.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
180
Elongation at Break, % 8.5
11
Fatigue Strength, MPa 200
450
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
70
Shear Strength, MPa 410
800
Tensile Strength: Ultimate (UTS), MPa 700
1340
Tensile Strength: Yield (Proof), MPa 610
930

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 210
920
Melting Completion (Liquidus), °C 660
1430
Melting Onset (Solidus), °C 540
1380
Specific Heat Capacity, J/kg-K 910
460
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 23
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
50
Density, g/cm3 3.0
8.3
Embodied Carbon, kg CO2/kg material 8.6
9.3
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 1470
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
140
Resilience: Unit (Modulus of Resilience), kJ/m3 2640
2340
Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 65
45
Strength to Weight: Bending, points 59
33
Thermal Diffusivity, mm2/s 49
2.9
Thermal Shock Resistance, points 31
61

Alloy Composition

Aluminum (Al), % 91.3 to 94.9
0.75 to 1.3
Boron (B), % 0
0 to 0.012
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
3.8 to 4.5
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 3.9 to 4.6
0 to 0.5
Iron (Fe), % 0 to 0.15
35.6 to 44.6
Lithium (Li), % 0.7 to 1.5
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0 to 1.0
Nickel (Ni), % 0
47 to 51
Niobium (Nb), % 0
2.7 to 3.3
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.12
0 to 0.5
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0 to 0.1
1.2 to 1.8
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.18
0
Residuals, % 0 to 0.15
0