MakeItFrom.com
Menu (ESC)

2095 Aluminum vs. SAE-AISI 1020 Steel

2095 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1020 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2095 aluminum and the bottom bar is SAE-AISI 1020 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 8.5
17 to 28
Fatigue Strength, MPa 200
180 to 250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 410
280
Tensile Strength: Ultimate (UTS), MPa 700
430 to 460
Tensile Strength: Yield (Proof), MPa 610
240 to 380

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 130
52
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
11
Electrical Conductivity: Equal Weight (Specific), % IACS 110
12

Otherwise Unclassified Properties

Base Metal Price, % relative 31
1.8
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.6
1.4
Embodied Energy, MJ/kg 160
18
Embodied Water, L/kg 1470
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
72 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 2640
150 to 380
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 65
15 to 16
Strength to Weight: Bending, points 59
16 to 17
Thermal Diffusivity, mm2/s 49
14
Thermal Shock Resistance, points 31
13 to 14

Alloy Composition

Aluminum (Al), % 91.3 to 94.9
0
Carbon (C), % 0
0.18 to 0.23
Copper (Cu), % 3.9 to 4.6
0
Iron (Fe), % 0 to 0.15
99.08 to 99.52
Lithium (Li), % 0.7 to 1.5
0
Magnesium (Mg), % 0.25 to 0.8
0
Manganese (Mn), % 0 to 0.25
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.12
0
Silver (Ag), % 0.25 to 0.6
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0.040 to 0.18
0
Residuals, % 0 to 0.15
0